Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Ecol Lett ; 27(3): e14412, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38549269

RESUMEN

Agricultural intensification not only increases food production but also drives widespread biodiversity decline. Increasing landscape heterogeneity has been suggested to increase biodiversity across habitats, while increasing crop heterogeneity may support biodiversity within agroecosystems. These spatial heterogeneity effects can be partitioned into compositional (land-cover type diversity) and configurational heterogeneity (land-cover type arrangement), measured either for the crop mosaic or across the landscape for both crops and semi-natural habitats. However, studies have reported mixed responses of biodiversity to increases in these heterogeneity components across taxa and contexts. Our meta-analysis covering 6397 fields across 122 studies conducted in Asia, Europe, North and South America reveals consistently positive effects of crop and landscape heterogeneity, as well as compositional and configurational heterogeneity for plant, invertebrate, vertebrate, pollinator and predator biodiversity. Vertebrates and plants benefit more from landscape heterogeneity, while invertebrates derive similar benefits from both crop and landscape heterogeneity. Pollinators benefit more from configurational heterogeneity, but predators favour compositional heterogeneity. These positive effects are consistent for invertebrates and vertebrates in both tropical/subtropical and temperate agroecosystems, and in annual and perennial cropping systems, and at small to large spatial scales. Our results suggest that promoting increased landscape heterogeneity by diversifying crops and semi-natural habitats, as suggested in the current UN Decade on Ecosystem Restoration, is key for restoring biodiversity in agricultural landscapes.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Europa (Continente) , Productos Agrícolas , Agricultura/métodos
2.
J Environ Manage ; 354: 120247, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367497

RESUMEN

The latest report on the state of nature in Europe (2013-2018) shows that biodiversity is declining at an alarming rate, with most protected species and habitats in poor condition. Despite an increasing volume of collected biodiversity information, urgent action is needed to integrate biodiversity data and knowledge to improve conservation efforts. We conducted a study in Catalonia (NE Spain), where we collected management measures implemented between 2013 and 2018, including allocation, budget, pressures aimed, and habitats/species potentially benefiting. We integrated information on pressures and habitats/species with the measures to identify non-spatial management gaps. Then, we integrated the spatially explicit information to determine the spatial management gap, identifying geographical areas where species/habitats are under pressure without registered measures. We demonstrated the importance of integrating existing information. Our findings revealed that resources were often not distributed adequately across species/habitats, with biases towards certain taxa being a common issue. The non-spatial management gap analysis identified taxonomic groups, especially plants and mollusks with the wider management gaps. We also identified threatened areas, especially in the northeast of the region with the larger spatial management gaps. These results could guide priority objectives to optimize conservation efforts. Integrating different information sources provided a broader view of the challenges that conservation science is facing nowadays. Our study offers a path toward bending the curve of biodiversity loss by providing an integrative framework that could optimize the use of the available information and help narrow the knowing-doing gap. In the context of the EU, this example demonstrates how information can be used to promote some environmental policy instruments, such as the Prioritized Action Frameworks (PAFs). Additionally, our findings highlight the importance of supporting decision-making with systematic assessments to identify deficiencies in the conservation process, reduce the loss of critical ecosystems and species, and avoid biases among taxa.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Conservación de los Recursos Naturales/métodos , Biodiversidad , Europa (Continente) , España
3.
Heliyon ; 10(3): e25312, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38322964

RESUMEN

Mapping the drivers of change that pose negative pressures or threats to biodiversity can help to identify where biodiversity is most threatened and can be used to determine priority sites to target conservation actions. Overlapping drivers of change maps with distribution maps of sensitive species provides valuable information to identify where and when it would be better to target actions to minimize the risk. The overall aim of this study was to develop a methodology for the integration of risk mapping associated with high human frequentation to guide conservation actions in two case study: the Kentish plover (Charadrius alexandrinus) and Posidonia meadows (Posidonia oceanica), both sensitive to human frequentation. To achieve this, we used two types of geolocated mobile phone information from the STRAVA platform: mapped paths and roads number of visitors at hourly precisions and a sporting activities heatmap representative of a wider period, together with species ecological information and complementary human frequentation data. The final, monthly risk maps identified the areas for Kentish plover with null, low, moderate, high, very high risk attributed to different aspects of the breeding biology of the species, nests, nestlings, and adults. The risk thresholds for nests are lower than for nestlings and adults, thought nestlings were generally less sensitive to human frequentation than adults. Visitors number ranges between 250 and 700 approximately suppose a moderate risk for the three assessed periods, and more than 1200 visitors appeared to prevent the nesting of the species completely. The final risk maps for Posidonia meadows determine the areas with low, moderate, hight and very high risk for human marine activities. Human frequentation values in this case study are scaled between 0 and 1, the results shows that values above 0.1 imply a high risk for the species. Both types of information can be used to target concrete, spatially explicit actions to minimize the risk caused by human frequentation. Furthermore, the first case study would allow to adapt the target actions to the species breeding phenology. The proposed risk assessment workflow is flexible and may be adjusted to match the available information and eventually could be adapted to other conservation objectives arising from different threats. In addition, data gathered from mobile mobility applications show great potential to accurately identify human frequentation, both spatially and temporally.

4.
Proc Biol Sci ; 291(2014): 20232383, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38196355

RESUMEN

Natural pest and weed regulation are essential for agricultural production, but the spatial distribution of natural enemies within crop fields and its drivers are mostly unknown. Using 28 datasets comprising 1204 study sites across eight Western and Central European countries, we performed a quantitative synthesis of carabid richness, activity densities and functional traits in relation to field edges (i.e. distance functions). We show that distance functions of carabids strongly depend on carabid functional traits, crop type and, to a lesser extent, adjacent non-crop habitats. Richness of both carnivores and granivores, and activity densities of small and granivorous species decreased towards field interiors, whereas the densities of large species increased. We found strong distance decays in maize and vegetables whereas richness and densities remained more stable in cereals, oilseed crops and legumes. We conclude that carabid assemblages in agricultural landscapes are driven by the complex interplay of crop types, adjacent non-crop habitats and further landscape parameters with great potential for targeted agroecological management. In particular, our synthesis indicates that a higher edge-interior ratio can counter the distance decay of carabid richness per field and thus likely benefits natural pest and weed regulation, hence contributing to agricultural sustainability.


Asunto(s)
Agricultura , Fabaceae , Productos Agrícolas , Europa (Continente) , Fenotipo
5.
Proc Natl Acad Sci U S A ; 120(21): e2216573120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186854

RESUMEN

Declines in European bird populations are reported for decades but the direct effect of major anthropogenic pressures on such declines remains unquantified. Causal relationships between pressures and bird population responses are difficult to identify as pressures interact at different spatial scales and responses vary among species. Here, we uncover direct relationships between population time-series of 170 common bird species, monitored at more than 20,000 sites in 28 European countries, over 37 y, and four widespread anthropogenic pressures: agricultural intensification, change in forest cover, urbanisation and temperature change over the last decades. We quantify the influence of each pressure on population time-series and its importance relative to other pressures, and we identify traits of most affected species. We find that agricultural intensification, in particular pesticides and fertiliser use, is the main pressure for most bird population declines, especially for invertebrate feeders. Responses to changes in forest cover, urbanisation and temperature are more species-specific. Specifically, forest cover is associated with a positive effect and growing urbanisation with a negative effect on population dynamics, while temperature change has an effect on the dynamics of a large number of bird populations, the magnitude and direction of which depend on species' thermal preferences. Our results not only confirm the pervasive and strong effects of anthropogenic pressures on common breeding birds, but quantify the relative strength of these effects stressing the urgent need for transformative changes in the way of inhabiting the world in European countries, if bird populations shall have a chance of recovering.


Asunto(s)
Agricultura , Bosques , Animales , Granjas , Europa (Continente) , Dinámica Poblacional , Aves/fisiología , Biodiversidad , Ecosistema , Conservación de los Recursos Naturales
6.
Proc Natl Acad Sci U S A ; 120(23): e2213330120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252949

RESUMEN

Species' range shifts and local extinctions caused by climate change lead to community composition changes. At large spatial scales, ecological barriers, such as biome boundaries, coastlines, and elevation, can influence a community's ability to shift in response to climate change. Yet, ecological barriers are rarely considered in climate change studies, potentially hindering predictions of biodiversity shifts. We used data from two consecutive European breeding bird atlases to calculate the geographic distance and direction between communities in the 1980s and their compositional best match in the 2010s and modeled their response to barriers. The ecological barriers affected both the distance and direction of bird community composition shifts, with coastlines and elevation having the strongest influence. Our results underscore the relevance of combining ecological barriers and community shift projections for identifying the forces hindering community adjustments under global change. Notably, due to (macro)ecological barriers, communities are not able to track their climatic niches, which may lead to drastic changes, and potential losses, in community compositions in the future.


Asunto(s)
Aves , Ecosistema , Animales , Aves/fisiología , Biodiversidad , Cambio Climático , Predicción
7.
Ecol Lett ; 26(6): 965-982, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36988091

RESUMEN

Research on island species-area relationships (ISAR) has expanded to incorporate functional (IFDAR) and phylogenetic (IPDAR) diversity. However, relative to the ISAR, we know little about IFDARs and IPDARs, and lack synthetic global analyses of variation in form of these three categories of island diversity-area relationship (IDAR). Here, we undertake the first comparative evaluation of IDARs at the global scale using 51 avian archipelagic data sets representing true and habitat islands. Using null models, we explore how richness-corrected functional and phylogenetic diversity scale with island area. We also provide the largest global assessment of the impacts of species introductions and extinctions on the IDAR. Results show that increasing richness with area is the primary driver of the (non-richness corrected) IPDAR and IFDAR for many data sets. However, for several archipelagos, richness-corrected functional and phylogenetic diversity changes linearly with island area, suggesting that the dominant community assembly processes shift along the island area gradient. We also find that archipelagos with the steepest ISARs exhibit the biggest differences in slope between IDARs, indicating increased functional and phylogenetic redundancy on larger islands in these archipelagos. In several cases introduced species seem to have 're-calibrated' the IDARs such that they resemble the historic period prior to recent extinctions.


Asunto(s)
Biodiversidad , Aves , Animales , Filogenia , Islas , Ecosistema
8.
Glob Chang Biol ; 29(12): 3271-3284, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36924241

RESUMEN

At large scales, the mechanisms underpinning stability in natural communities may vary in importance due to changes in species composition, mean abundance, and species richness. Here we link species characteristics (niche positions) and community characteristics (richness and abundance) to evaluate the importance of stability mechanisms in 156 butterfly communities monitored across three European countries and spanning five bioclimatic regions. We construct niche-based hierarchical structural Bayesian models to explain first differences in abundance, population stability, and species richness between the countries, and then explore how these factors impact community stability both directly and indirectly (via synchrony and population stability). Species richness was partially explained by the position of a site relative to the niches of the species pool, and species near the centre of their niche had higher average population stability. The differences in mean abundance, population stability, and species richness then influenced how much variation in community stability they explained across the countries. We found, using variance partitioning, that community stability in Finnish communities was most influenced by community abundance, whereas this aspect was unimportant in Spain with species synchrony explaining most variation; the UK was somewhat intermediate with both factors explaining variation. Across all countries, the diversity-stability relationship was indirect with species richness reducing synchrony which increased community stability, with no direct effects of species richness. Our results suggest that in natural communities, biogeographical variation observed in key drivers of stability, such as population abundance and species richness, leads to community stability being limited by different factors and that this can partially be explained due to the niche characteristics of the European butterfly assemblage.


Asunto(s)
Mariposas Diurnas , Ecosistema , Animales , Biodiversidad , Teorema de Bayes , Europa (Continente)
9.
J Environ Manage ; 337: 117707, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36989920

RESUMEN

In southern Europe, land abandonment and an unbalanced investment toward fire suppression instead of prevention has gradually increased wildfire risk, which calls for a paradigm change in fire management policies. Here we combined scenario analysis, fire landscape modelling, and economic tools to identify which land-use policies would reduce the expected wildfire-related losses in the Transboundary Biosphere Reserve 'Gerês-Xurés' (Spain-Portugal). To do so, we applied the least-cost-plus-net-value-change approach and estimated net changes in wildfire damages based on their implications for the 2010-2050 period and five ecosystem services: agriculture, pasture, timber, recreation and climate regulation. Four land-use scenarios were considered: (1) Business as Usual (BAU); (2) fire-smart, fostering more fire-resistant (less flammable) and/or fire-resilient landscapes (fire-smart); (3) High Nature Value farmlands (HNVf), wherein the abandonment of extensive agriculture is reversed; and (4) a combination of HNVf and fire-smart. HNVf is the best scenario for suppression cost savings, but it generates the lowest net present value of societal benefits from climate regulation. In fact, the most efficient scenario with the lowest societal discounted net suppression costs and change on ecosystem services damages is the HNVf + fire-smart scenario, as it also generates suppression cost savings from agricultural expansion, and lead to a significant reduction in damages on timber and recreational benefits. Therefore, reverting land abandonment through recultivation and promoting fire-resistant tree species is the most efficient way to reduce wildfire hazard. In this sense, payments for ecosystem services should reward farmers and landowners for their role in wildfire prevention. This study improves the understanding of the financial and societal benefits derived from reducing fire suppression spending and ecosystem services damage by undertaking fire-smart land-use strategies, which can be essential to enhance local stakeholders' support for Payments of Ecosystem Services policies for wildfire prevention.


Asunto(s)
Incendios , Incendios Forestales , Ecosistema , España , Agricultura , Conservación de los Recursos Naturales
10.
Glob Chang Biol ; 29(6): 1484-1500, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36534408

RESUMEN

Forests provide a wide variety of ecosystem services (ES) to society. The boreal biome is experiencing the highest rates of warming on the planet and increasing demand for forest products. To foresee how to maximize the adaptation of boreal forests to future warmer conditions and growing demands of forest products, we need a better understanding of the relative importance of forest management and climate change on the supply of ecosystem services. Here, using Finland as a boreal forest case study, we assessed the potential supply of a wide range of ES (timber, bilberry, cowberry, mushrooms, carbon storage, scenic beauty, species habitat availability and deadwood) given seven management regimes and four climate change scenarios. We used the forest simulator SIMO to project forest dynamics for 100 years into the future (2016-2116) and estimate the potential supply of each service using published models. Then, we tested the relative importance of management and climate change as drivers of the future supply of these services using generalized linear mixed models. Our results show that the effects of management on the future supply of these ES were, on average, 11 times higher than the effects of climate change across all services, but greatly differed among them (from 0.53 to 24 times higher for timber and cowberry, respectively). Notably, the importance of these drivers substantially differed among biogeographical zones within the boreal biome. The effects of climate change were 1.6 times higher in northern Finland than in southern Finland, whereas the effects of management were the opposite-they were three times higher in the south compared to the north. We conclude that new guidelines for adapting forests to global change should account for regional differences and the variation in the effects of climate change and management on different forest ES.


Asunto(s)
Ecosistema , Taiga , Cambio Climático , Bosques , Adaptación Fisiológica , Árboles
11.
Animals (Basel) ; 12(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36496757

RESUMEN

Discoglossus pictus is a North African amphibian that was introduced in southern France early the 20th century and has spread south and north along the Mediterranean coastal plains up to 170 km. In order to disentangle the conservation implications of the spread of D. pictus for sensitive native species, we examined the impact of long-term climate warming on the basis of niche overlap analysis, taking into account abiotic factors. The study area covered the distribution ranges of all genus Discoglossus species in northwestern Africa (659,784 km2), Sicily (27,711 km2), the Iberian Peninsula, and southern France (699,546 km2). Niche overlap was measured from species environmental spaces extracted via PCA, including climate and relief environmental variables. Current and future climatic suitability for each species was assessed in an ensemble-forecasting framework of species distribution models, built using contemporary species data and climate predictors and projected to 2070's climatic conditions. Our results show a strong climatic niche overlap between D. pictus and native and endemic species in the Iberian Peninsula. In this context, all species will experience an increase in climatic suitability over the next decades, with the only exception being Pelodytes punctatus, which could be negatively affected by synergies between global warming and cohabitation with D. pictus.

12.
Glob Chang Biol ; 28(21): 6333-6348, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35949042

RESUMEN

To reach the Paris Agreement, societies need to increase the global terrestrial carbon sink. There are many climate change mitigation solutions (CCMS) for forests, including increasing bioenergy, bioeconomy, and protection. Bioenergy and bioeconomy solutions use climate-smart, intensive management to generate high quantities of bioenergy and bioproducts. Protection of (semi-)natural forests is a major component of "natural climate solution" (NCS) since forests store carbon in standing biomass and soil. Furthermore, protected forests provide more habitat for biodiversity and non-wood ecosystem services (ES). We investigated the impacts of different CCMS and climate scenarios, jointly or in isolation, on future wood ES, non-wood ES, and regulating ES for a major wood provider for the international market. Specifically, we projected future ES given by three CCMS scenarios for Sweden 2020-2100. In the long term, fulfilling the increasing wood demand through bioenergy and bioeconomy solutions will decrease ES multifunctionality, but the increased stand age and wood stocks induced by rising greenhouse gas (GHG) concentrations will partially offset these negative effects. Adopting bioenergy and bioeconomy solutions will have a greater negative impact on ES supply than adopting NCS. Bioenergy or bioeconomy solutions, as well as increasing GHG emissions, will reduce synergies and increase trade-offs in ES. NCS, by contrast, increases the supply of multiple ES in synergy, even transforming current ES trade-offs into future synergies. Moreover, NCS can be considered an adaptation measure to offset negative climate change effects on the future supplies of non-wood ES. In boreal countries around the world, forestry strategies that integrate NCS more deeply are crucial to ensure a synergistic supply of multiple ES.


Asunto(s)
Ecosistema , Gases de Efecto Invernadero , Carbono/análisis , Conservación de los Recursos Naturales , Agricultura Forestal , Bosques , Suelo
13.
Sci Total Environ ; 810: 151331, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34757099

RESUMEN

Forest ecosystems face an increasing pressure of insect pest outbreaks due to changes in land-use, new climatic conditions, and the arrival of new invasive alien species. Also, insect outbreaks may interact with other shifting disturbances such as fire and drought, that eventually may boost the impacts of pests on forest ecosystems. In the case of alien species, the lack of long-term data and their rapid spread challenges their study and require appropriate new management strategies to cope with them. Here we studied the case of boxwoods (Buxus sempervirens) in Southern Pyrenees under the pressure of the invasive insect box tree moth (Cydalima perspectalis), fire, and drought events. We projected the future of boxwoods through the development of a spatially explicit simulation model and its implementation under different climatic and ecological scenarios. The results showed an initial boxwood decline due to C. perspectalis fast spread but a later stabilization of the population resulting from a fluctuating dynamic. Climate change is expected to reduce overall insect habitat suitability and future negative impacts on boxwoods. Furthermore, boxwood drought-induced mortality and burning will increase under new climatic conditions. Interaction between drought and insect pest conditioning regeneration after defoliation were negligible in our analyses. Boxwood decline was anticipated to be more notorious in locations under 800 m a.s.l. and in habitats where the species dominates the forest understory, while boxwood in open shrub forest types typical of higher elevations will be less endangered. Our results provide valuable information for boxwood and C. perspectalis management in a context of joint disturbance impacts and contribute to a better identification of the role of forest disturbances and their interactions.


Asunto(s)
Sequías , Incendios , Animales , Cambio Climático , Brotes de Enfermedades , Ecosistema , Bosques
14.
Glob Chang Biol ; 27(18): 4210-4222, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34231282

RESUMEN

Forests provide a wide range of provisioning, regulating and cultural services of great value to societies across the Mediterranean basin. In this study, we reviewed the scientific literature of the last 30 years to quantify the magnitude of projected changes in ecosystem services provision by Mediterranean forests under IPCC climate change scenarios. We classified the scenarios according to the temperature threshold of 2℃ set by the Paris Agreement (below or above). The review of 78 studies shows that climate change will lead to a general reduction in the provision of regulating services (e.g. carbon storage, regulation of freshwater quantity and quality) and a general increase in the number of fires, burnt areas and generally, an increase in climate-related forest hazards (median + 62% by 2100). Studies using scenarios above the 2℃ threshold projected significantly more negative changes in regulating services than studies using scenarios below this threshold. Main projected trend changes on material services (e.g. wood products), were less clear and depended on (i) whether or not the studies considered the interaction between the rise in temperatures and other drivers (e.g. forest management, CO2 fertilization) and (ii) differences in productivity responses across the tree species evaluated. Overall, the reviewed studies projected significant reductions in range extent and habitat suitability for the most drought-sensitive forest species (e.g. -88% Fagus sylvatica), while the amount of habitat available for more drought-tolerant species will remain stable or increase; however, the magnitude of projected change for these more xeric species was limited when high-end extreme climatic scenarios were considered (above Paris Agreement). Our review highlights the benefits that climate change mitigation (to keep global mean temperature increase <2℃) can bring in terms of service provision and conservation of Mediterranean forests.


Asunto(s)
Ecosistema , Incendios , Cambio Climático , Bosques , Árboles
15.
Ecol Evol ; 11(10): 5713-5727, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34026042

RESUMEN

Invasive species have considerably increased in recent decades due to direct and indirect effects of ever-increasing international trade rates and new climate conditions derived from global change. We need to better understand how the dynamics of early species invasions develop and how these result in impacts on the invaded ecosystems. Here we studied the distribution and severe defoliation processes of the box tree moth (Cydalima perspectalis W.), a tree defoliator insect native to Asia and invasive in Europe since 2007, through the combination of species distribution models based on climate and landscape composition information. The results showed that the combination of data from the native and the invaded areas was the most effective methodology for the appropriate invasive species modeling. The species was not influenced by overall landscape factors, but only by the presence of its host plant, dispersal capacity, and climate suitability. Such climate suitability was described by low precipitation seasonality and minimum annual temperatures around 0°C, defining a continentality effect throughout the territory. We emphasize the need of studying distribution and severe defoliation processes separately because we identified that climate suitability was slightly involved in limiting species spread processes but strongly constrained ecosystem impact in terms of defoliation before the species reaches equilibrium with the new environment. New studies on habitat recovery after disturbance, ecological consequences of such impact, and community dynamics in a context of climate change are required for a better understanding of this invasive species.

16.
Glob Chang Biol ; 27(13): 3001-3003, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33797836

RESUMEN

Climate regulation strategies based on forest restoration could pose an increase in fire risk, especially under drier and warmer conditions over large regions of Europe, impacting climate, the environment and human health. Climate-smarter options, such as wetlands restoration or recovery of grassland, that provide similar benefits for climate but also develop less flammable landscape is a more suitable option for these regions in Europe and elsewhere facing similar challenges.


Asunto(s)
Cambio Climático , Árboles , Europa (Continente) , Bosques , Humanos , Humedales
17.
Proc Biol Sci ; 288(1946): 20202513, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33715437

RESUMEN

Biodiversity is threatened by the growth of urban areas. However, it is still poorly understood how animals can cope with and adapt to these rapid and dramatic transformations of natural environments. The COVID-19 pandemic provides us with a unique opportunity to unveil the mechanisms involved in this process. Lockdown measures imposed in most countries are causing an unprecedented reduction of human activities, giving us an experimental setting to assess the effects of our lifestyle on biodiversity. We studied the birds' response to the population lockdown by using more than 126 000 bird records collected by a citizen science project in northeastern Spain. We compared the occurrence and detectability of birds during the spring 2020 lockdown with baseline data from previous years in the same urban areas and dates. We found that birds did not increase their probability of occurrence in urban areas during the lockdown, refuting the hypothesis that nature has recovered its space in human-emptied urban areas. However, we found an increase in bird detectability, especially during early morning, suggesting a rapid change in the birds' daily routines in response to quieter and less crowded cities. Therefore, urban birds show high behavioural plasticity to rapidly adjust to novel environmental conditions, such as those imposed by the COVID-19.


Asunto(s)
Conducta Animal , Aves , COVID-19 , Pandemias , Animales , Biodiversidad , Ciudades , Control de Enfermedades Transmisibles , Humanos , SARS-CoV-2 , España
18.
Biol Rev Camb Philos Soc ; 96(3): 976-998, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33561321

RESUMEN

Biodiversity faces many threats and these can interact to produce outcomes that may not be predicted by considering their effects in isolation. Habitat loss and fragmentation (hereafter 'fragmentation') and altered fire regimes are important threats to biodiversity, but their interactions have not been systematically evaluated across the globe. In this comprehensive synthesis, including 162 papers which provided 274 cases, we offer a framework for understanding how fire interacts with fragmentation. Fire and fragmentation interact in three main ways: (i) fire influences fragmentation (59% of 274 cases), where fire either destroys and fragments habitat or creates and connects habitat; (ii) fragmentation influences fire (25% of cases) where, after habitat is reduced in area and fragmented, fire in the landscape is subsequently altered because people suppress or ignite fires, or there is increased edge flammability or increased obstruction to fire spread; and (iii) where the two do not influence each other, but fire interacts with fragmentation to affect responses like species richness, abundance and extinction risk (16% of cases). Where fire and fragmentation do influence each other, feedback loops are possible that can lead to ecosystem conversion (e.g. forest to grassland). This is a well-documented threat in the tropics but with potential also to be important elsewhere. Fire interacts with fragmentation through scale-specific mechanisms: fire creates edges and drives edge effects; fire alters patch quality; and fire alters landscape-scale connectivity. We found only 12 cases in which studies reported the four essential strata for testing a full interaction, which were fragmented and unfragmented landscapes that both span contrasting fire histories, such as recently burnt and long unburnt vegetation. Simulation and empirical studies show that fire and fragmentation can interact synergistically, multiplicatively, antagonistically or additively. These cases highlight a key reason why understanding interactions is so important: when fire and fragmentation act together they can cause local extinctions, even when their separate effects are neutral. Whether fire-fragmentation interactions benefit or disadvantage species is often determined by the species' preferred successional stage. Adding fire to landscapes generally benefits early-successional plant and animal species, whereas it is detrimental to late-successional species. However, when fire interacts with fragmentation, the direction of effect of fire on a species could be reversed from the effect expected by successional preferences. Adding fire to fragmented landscapes can be detrimental for species that would normally co-exist with fire, because species may no longer be able to disperse to their preferred successional stage. Further, animals may be attracted to particular successional stages leading to unexpected responses to fragmentation, such as higher abundance in more isolated unburnt patches. Growing human populations and increasing resource consumption suggest that fragmentation trends will worsen over coming years. Combined with increasing alteration of fire regimes due to climate change and human-caused ignitions, interactions of fire with fragmentation are likely to become more common. Our new framework paves the way for developing a better understanding of how fire interacts with fragmentation, and for conserving biodiversity in the face of these emerging challenges.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Cambio Climático , Bosques , Humanos , Plantas
19.
J Anim Ecol ; 90(5): 1085-1095, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33496011

RESUMEN

Global climate change is driving species' distributions towards the poles and mountain tops during both non-breeding and breeding seasons, leading to changes in the composition of natural communities. However, the degree of season differences in climate-driven community shifts has not been thoroughly investigated at large spatial scales. We compared the rates of change in the community composition during both winter (non-breeding season) and summer (breeding) and their relation to temperature changes. Based on continental-scale data from Europe and North America, we examined changes in bird community composition using the community temperature index (CTI) approach and compared the changes with observed regional temperature changes during 1980-2016. CTI increased faster in winter than in summer. This seasonal discrepancy is probably because individuals are less site-faithful in winter, and can more readily shift their wintering sites in response to weather in comparison to the breeding season. Regional long-term changes in community composition were positively associated with regional temperature changes during both seasons, but the pattern was only significant during summer due to high annual variability in winter communities. Annual changes in community composition were positively associated with the annual temperature changes during both seasons. Our results were broadly consistent across continents, suggesting some climate-driven restructuring in both European and North American avian communities. Because community composition has changed much faster during the winter than during the breeding season, it is important to increase our knowledge about climate-driven impacts during the less-studied non-breeding season.


Asunto(s)
Aves , Cambio Climático , Animales , Europa (Continente) , América del Norte , Dinámica Poblacional , Estaciones del Año
20.
Sci Total Environ ; 755(Pt 1): 142897, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33348480

RESUMEN

Rewilding has been proposed as an opportunity for biodiversity conservation in abandoned landscapes. However, rewilding is challenged by the increasing fire risk associated with more flammable landscapes, and the loss of open-habitat specialist species. Contrastingly, supporting High Nature Value farmlands (HNVf) has been also highlighted as a valuable option, but the effective implementation of agricultural policies often fails leading to uncertain scenarios wherein the effects of wildfire management remain largely unexplored. Herein, we simulated fire-landscape dynamics to evaluate how fire suppression scenarios affect fire regime and biodiversity (102 species of vertebrates) under rewilding and HNVf policies in the future (2050), in a transnational biosphere reserve (Gerês-Xurés Mountains, Portugal-Spain). Rewilding and HNVf scenarios were modulated by three different levels of fire suppression effectiveness. Then, we quantified scenario effects on fire regime (burned and suppressed areas) and biodiversity (habitat suitability change for 2050). Simulations confirm HNVf as a long-term opportunity for fire suppression (up to 30,000 ha of additional suppressed areas between 2031 and 2050 in comparison to rewilding scenario) and for conservation (benefiting around 60% of species). Rewilding benefits some species (20%), including critically endangered, vulnerable and endemic taxa, while several species (33%) also profit from open habitats created by fire. Although HNVf remains the best scenario, rewilding reinforced by low fire suppression management may provide a nature-based solution when societal support through agricultural policies fails.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...